Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT AimBeta diversity quantifies the similarity of ecological assemblages. Its increase, known as biotic homogenisation, can be a consequence of biological invasions. However, species occurrence (presence/absence) and abundance‐based analyses can produce contradictory assessments of the magnitude and direction of changes in beta diversity. Previous work indicates these contradictions should be less frequent in nature than in theory, but a growing number of empirical studies report discrepancies between occurrence‐ and abundance‐based approaches. Understanding if these discrepancies represent a few isolated cases or are systematic across a diversity of ecosystems would allow us to better understand the general patterns, mechanisms and impacts of biotic homogenisation. LocationUnited States. Time Period1963–2020. Major Taxa StudiedVascular plants. MethodsWe used a dataset of more than 70,000 vegetation survey plots to assess differences in biotic homogenisation with and without invasion using both occurrence‐ and abundance‐based metrics of beta diversity. We estimated taxonomic biotic homogenisation by comparing beta diversity of invaded and uninvaded plots with both classes of metrics and investigated the characteristics of the non‐native species pool that influenced the likelihood that these metrics disagree. ResultsIn 78% of plot comparisons, occurrence‐ and abundance‐based calculations agreed in direction, and the two metrics were generally well correlated. Our empirical results are consistent with previous theory. Discrepancies between the metrics were more likely when the same non‐native species was at high cover at both plots compared for beta diversity, and when these plots were spatially distant. Main ConclusionsIn about 20% of cases, our calculations revealed differences in direction (homogenisation vs. differentiation) when comparing occurrence‐ and abundance‐based metrics, indicating that the metrics are not interchangeable, especially when distances between plots are high and invader diversity is low. When data permit, combining the two approaches can offer insights into the role of invasions and extirpations in driving biotic homogenisation/differentiation.more » « lessFree, publicly-accessible full text available March 1, 2026
-
ABSTRACT The fundamental trade‐off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade‐off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non‐proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.more » « less
-
Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.more » « less
-
Abstract The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.more » « less
-
Abstract Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.more » « less
-
Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size–fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.more » « less
An official website of the United States government
